常用的2d数学工具类

前言

学习目标

  • 创建二维向量对象,并掌握向量的基本算法
  • 创建三阶矩阵对象,并掌握矩阵的基本算法

知识点

  • 向量
  • 矩阵

前情回顾

之前我们创建了vue+vite+ts+vitest 项目,并创建了我们所需要的类对象。

接下我们便要完善这些类对象,不过在此之前,我们要先准备好几个常用的数学方法。

1-向量对象

向量是高中的数学知识,没啥难度,大家可以简单看看,理解就好。

  • /src/lmm/math/Vector2.ts
import { Matrix3 } from './Matrix3'


class Vector2 {
    x = 0
    y = 0
    readonly isVector2 = true
    constructor(x = 0, y = x) {
        this.x = x
        this.y = y
    }

    get width() {
        return this.x
    }

    set width(value) {
        this.x = value
    }

    get height() {
        return this.y
    }

    set height(value) {
        this.y = value
    }

    set(x: number, y = x) {
        this.x = x
        this.y = y


        return this
    }

    setScalar(scalar: number) {
        this.x = scalar
        this.y = scalar

        return this
    }

    setX(x: number) {
        this.x = x

        return this
    }

    setY(y: number) {
        this.y = y

        return this
    }


    setComponent(index: number, value: number) {
        switch (index) {
            case 0:
                this.x = value
                break
            case 1:
                this.y = value
                break
            default:
                throw new Error('index is out of range: ' + index)
        }

        return this
    }


    getComponent(index: number) {
        switch (index) {
            case 0:
                return this.x
            case 1:
                return this.y
            default:
                throw new Error('index is out of range: ' + index)
        }
    }


    clone() {
        return new Vector2(this.x, this.y)
    }


    copy(v: Vector2) {
        this.x = v.x
        this.y = v.y

        return this
    }

    add(v: Vector2) {
        this.x += v.x
        this.y += v.y


        return this
    }



    addScalar(s: number) {
        this.x += s
        this.y += s


        return this
    }



    addVectors(a: Vector2, b: Vector2) {
        this.x = a.x + b.x
        this.y = a.y + b.y

        return this
    }

    addScaledVector(v: Vector2, s: number) {
        this.x += v.x * s
        this.y += v.y * s

        return this
    }


    sub(v: Vector2) {
        this.x -= v.x
        this.y -= v.y


        return this
    }

    subScalar(s: number) {
        this.x -= s
        this.y -= s

        return this
    }

    subVectors(a: Vector2, b: Vector2) {
        this.x = a.x - b.x
        this.y = a.y - b.y


        return this
    }


    multiply(v: Vector2) {
        this.x *= v.x
        this.y *= v.y


        return this
    }

    multiplyScalar(scalar: number) {
        this.x *= scalar
        this.y *= scalar

        return this
    }

    divide(v: Vector2) {
        this.x /= v.x
        this.y /= v.y

        return this
    }


    divideScalar(scalar: number) {
        return this.multiplyScalar(1 / scalar)
    }


    min(v: Vector2) {
        this.x = Math.min(this.x, v.x)
        this.y = Math.min(this.y, v.y)


        return this
    }



    max(v: Vector2) {
        this.x = Math.max(this.x, v.x)
        this.y = Math.max(this.y, v.y)


        return this
    }

    clamp(min: Vector2, max: Vector2) {
        // assumes min < max, componentwise

        this.x = Math.max(min.x, Math.min(max.x, this.x))
        this.y = Math.max(min.y, Math.min(max.y, this.y))

        return this
    }

    clampScalar(minVal: number, maxVal: number) {
        this.x = Math.max(minVal, Math.min(maxVal, this.x))
        this.y = Math.max(minVal, Math.min(maxVal, this.y))


        return this
    }

    clampLength(min: number, max: number) {
        const length = this.length()

        return this.divideScalar(length || 1).multiplyScalar(
            Math.max(min, Math.min(max, length))
        )
    }

    floor() {
        this.x = Math.floor(this.x)
        this.y = Math.floor(this.y)

        return this
    }

    ceil() {
        this.x = Math.ceil(this.x)
        this.y = Math.ceil(this.y)

        return this
    }


    round() {
        this.x = Math.round(this.x)
        this.y = Math.round(this.y)

        return this
    }

    roundToZero() {
        this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x)
        this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y)

        return this
    }

    negate() {
        this.x = -this.x
        this.y = -this.y


        return this
    }



    dot(v: Vector2) {
        return this.x * v.x + this.y * v.y
    }

    cross(v: Vector2) {
        return this.x * v.y - this.y * v.x
    }

    lengthSq() {
        return this.x * this.x + this.y * this.y
    }



    length() {
        return Math.sqrt(this.x * this.x + this.y * this.y)
    }


    manhattanLength() {
        return Math.abs(this.x) + Math.abs(this.y)
    }

    normalize() {
        return this.divideScalar(this.length() || 1)
    }

    angle() {
        // computes the angle in radians with respect to the positive x-axis


        const angle = Math.atan2(-this.y, -this.x) + Math.PI

        return angle
    }

    distanceTo(v: Vector2) {
        return Math.sqrt(this.distanceToSquared(v))
    }



    distanceToSquared(v: Vector2) {
        const dx = this.x - v.x,
            dy = this.y - v.y
        return dx * dx + dy * dy
    }

    manhattanDistanceTo(v: Vector2) {
        return Math.abs(this.x - v.x) + Math.abs(this.y - v.y)
    }

    setLength(length: number) {
        return this.normalize().multiplyScalar(length)
    }

    lerp(v: Vector2, alpha: number) {
        this.x += (v.x - this.x) * alpha
        this.y += (v.y - this.y) * alpha

        return this
    }

    lerpVectors(v1: Vector2, v2: Vector2, alpha: number) {
        this.x = v1.x + (v2.x - v1.x) * alpha
        this.y = v1.y + (v2.y - v1.y) * alpha

        return this
    }

    equals(v: Vector2) {
        return v.x === this.x && v.y === this.y
    }

    fromArray(array: number[], offset = 0) {
        this.x = array[offset]
        this.y = array[offset + 1]

        return this
    }

    toArray(array: number[], offset = 0) {
        array[offset] = this.x
        array[offset + 1] = this.y

        return array
    }

    rotate(angle: number) {
        const { x, y } = this
        const c = Math.cos(angle)
        const s = Math.sin(angle)
        this.x = x * c - y * s
        this.y = x * s + y * c
        return this
    }

    rotateAround(center: Vector2, angle: number) {
        const c = Math.cos(angle),
            s = Math.sin(angle)

        const x = this.x - center.x
        const y = this.y - center.y

        this.x = x * c - y * s + center.x
        this.y = x * s + y * c + center.y

        return this
    }

    random() {
        this.x = Math.random()
        this.y = Math.random()
        return this
    }

    lookAt(v: Vector2) {
        const p = new Vector2().subVectors(v, this)
        const ang = Math.atan2(p.y, p.x)
        if (ang < 0) {
            return ang + Math.PI * 2
        } else {
            return ang
        }
    }

    applyMatrix3(m: Matrix3) {
        const x = this.x,
            y = this.y
        const e = m.elements

        this.x = e[0] * x + e[3] * y + e[6]
        this.y = e[1] * x + e[4] * y + e[7]

        return this
    }

    *[Symbol.iterator]() {
        yield this.x
        yield this.y
    }
}

export { Vector2 }

2-矩阵对象

对于矩阵对象的概念,我在一篇WebGL 的文章里说过,大家可以参考此文章

  • /src/lmm/math/Matrix3.ts
class Matrix3 {
    elements: number[] = [1, 0, 0, 0, 1, 0, 0, 0, 1]
    set(
        n11: number,
        n12: number,
        n13: number,
        n21: number,
        n22: number,
        n23: number,
        n31: number,
        n32: number,
        n33: number
    ) {
        const te = this.elements
        te[0] = n11
        te[1] = n21
        te[2] = n31
        te[3] = n12
        te[4] = n22
        te[5] = n32
        te[6] = n13
        te[7] = n23
        te[8] = n33
        return this
    }
    identity() {
        this.set(1, 0, 0, 0, 1, 0, 0, 0, 1)

        return this
    }


    copy(m: Matrix3) {
        const te = this.elements
        const me = m.elements


        te[0] = me[0]
        te[1] = me[1]
        te[2] = me[2]
        te[3] = me[3]
        te[4] = me[4]
        te[5] = me[5]
        te[6] = me[6]
        te[7] = me[7]
        te[8] = me[8]

        return this
    }

    setFromMatrix4(m: Matrix3) {
        const me = m.elements

        this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10])


        return this
    }

    multiply(m: Matrix3) {
        return this.multiplyMatrices(this, m)
    }

    premultiply(m: Matrix3) {
        return this.multiplyMatrices(m, this)
    }

    multiplyMatrices(a: Matrix3, b: Matrix3) {
        const ae = a.elements
        const be = b.elements
        const te = this.elements

        const a11 = ae[0],
            a12 = ae[3],
            a13 = ae[6]
        const a21 = ae[1],
            a22 = ae[4],
            a23 = ae[7]
        const a31 = ae[2],
            a32 = ae[5],
            a33 = ae[8]


        const b11 = be[0],
            b12 = be[3],
            b13 = be[6]
        const b21 = be[1],
            b22 = be[4],
            b23 = be[7]
        const b31 = be[2],
            b32 = be[5],
            b33 = be[8]

        te[0] = a11 * b11 + a12 * b21 + a13 * b31
        te[3] = a11 * b12 + a12 * b22 + a13 * b32
        te[6] = a11 * b13 + a12 * b23 + a13 * b33

        te[1] = a21 * b11 + a22 * b21 + a23 * b31
        te[4] = a21 * b12 + a22 * b22 + a23 * b32
        te[7] = a21 * b13 + a22 * b23 + a23 * b33



        te[2] = a31 * b11 + a32 * b21 + a33 * b31
        te[5] = a31 * b12 + a32 * b22 + a33 * b32
        te[8] = a31 * b13 + a32 * b23 + a33 * b33


        return this
    }



    multiplyScalar(s: number) {
        const te = this.elements


        te[0] *= s
        te[3] *= s
        te[6] *= s
        te[1] *= s
        te[4] *= s
        te[7] *= s
        te[2] *= s
        te[5] *= s
        te[8] *= s

        return this
    }


    determinant() {
        const te = this.elements

        const a = te[0],
            b = te[1],
            c = te[2],
            d = te[3],
            e = te[4],
            f = te[5],
            g = te[6],
            h = te[7],
            i = te[8]

        return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g
    }


    invert() {
        const te = this.elements,
            n11 = te[0],
            n21 = te[1],
            n31 = te[2],
            n12 = te[3],
            n22 = te[4],
            n32 = te[5],
            n13 = te[6],
            n23 = te[7],
            n33 = te[8],
            t11 = n33 * n22 - n32 * n23,
            t12 = n32 * n13 - n33 * n12,
            t13 = n23 * n12 - n22 * n13,
            det = n11 * t11 + n21 * t12 + n31 * t13

        if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0)

        const detInv = 1 / det

        te[0] = t11 * detInv
        te[1] = (n31 * n23 - n33 * n21) * detInv
        te[2] = (n32 * n21 - n31 * n22) * detInv


        te[3] = t12 * detInv
        te[4] = (n33 * n11 - n31 * n13) * detInv
        te[5] = (n31 * n12 - n32 * n11) * detInv


        te[6] = t13 * detInv
        te[7] = (n21 * n13 - n23 * n11) * detInv
        te[8] = (n22 * n11 - n21 * n12) * detInv


        return this
    }



    transpose() {
        let tmp
        const m = this.elements


        tmp = m[1]
        m[1] = m[3]
        m[3] = tmp
        tmp = m[2]
        m[2] = m[6]
        m[6] = tmp
        tmp = m[5]
        m[5] = m[7]
        m[7] = tmp

        return this
    }

    transposeIntoArray(r: number[]) {
        const m = this.elements


        r[0] = m[0]
        r[1] = m[3]
        r[2] = m[6]
        r[3] = m[1]
        r[4] = m[4]
        r[5] = m[7]
        r[6] = m[2]
        r[7] = m[5]
        r[8] = m[8]

        return this
    }

    setUvTransform(
        tx: number,
        ty: number,
        sx: number,
        sy: number,
        rotation: number,
        cx: number,
        cy: number
    ) {
        const c = Math.cos(rotation)
        const s = Math.sin(rotation)


        this.set(
            sx * c,
            sx * s,
            -sx * (c * cx + s * cy) + cx + tx,
            -sy * s,
            sy * c,
            -sy * (-s * cx + c * cy) + cy + ty,
            0,
            0,
            1
        )

        return this
    }

    scale(sx: number, sy: number) {
        this.premultiply(_m3.makeScale(sx, sy))


        return this
    }



    rotate(theta: number) {
        this.premultiply(_m3.makeRotation(theta))

        return this
    }

    translate(tx: number, ty: number) {
        this.premultiply(_m3.makeTranslation(tx, ty))

        return this
    }



    // for 2D Transforms
    makeTranslation(x: number, y: number) {
        this.set(1, 0, x, 0, 1, y, 0, 0, 1)


        return this
    }

    makeRotation(theta: number) {
        // counterclockwise

        const c = Math.cos(theta)
        const s = Math.sin(theta)

        this.set(c, -s, 0, s, c, 0, 0, 0, 1)


        return this
    }

    makeScale(x: number, y: number) {
        this.set(x, 0, 0, 0, y, 0, 0, 0, 1)

        return this
    }



    equals(matrix: Matrix3) {
        const te = this.elements
        const me = matrix.elements

        for (let i = 0; i < 9; i++) {
            if (te[i] !== me[i]) return false
        }

        return true
    }

    fromArray(array: number[], offset = 0) {
        for (let i = 0; i < 9; i++) {
            this.elements[i] = array[i + offset]
        }

        return this
    }

    clone() {
        return new Matrix3().fromArray(this.elements)
    }
}
const _m3 =  new Matrix3()
export { Matrix3 }

对于上面的方法大家可以自己看看,看不懂可以随时跟我说。

之后我们在实战中,用到哪些方法,我会再详细解释。

3-MathUtils.ts

MathUtils.ts是一个常用的数学工具包,里面装着一些杂七杂八的数学方法。

const _lut = ['00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63','64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7','c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff']


let _seed = 1234567

const DEG2RAD = Math.PI / 180
const RAD2DEG = 180 / Math.PI

// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
function generateUUID() {
    const d0 = (Math.random() * 0xffffffff) | 0
    const d1 = (Math.random() * 0xffffffff) | 0
    const d2 = (Math.random() * 0xffffffff) | 0
    const d3 = (Math.random() * 0xffffffff) | 0
    const uuid =
        _lut[d0 & 0xff] +
        _lut[(d0 >> 8) & 0xff] +
        _lut[(d0 >> 16) & 0xff] +
        _lut[(d0 >> 24) & 0xff] +
        '-' +
        _lut[d1 & 0xff] +
        _lut[(d1 >> 8) & 0xff] +
        '-' +
        _lut[((d1 >> 16) & 0x0f) | 0x40] +
        _lut[(d1 >> 24) & 0xff] +
        '-' +
        _lut[(d2 & 0x3f) | 0x80] +
        _lut[(d2 >> 8) & 0xff] +
        '-' +
        _lut[(d2 >> 16) & 0xff] +
        _lut[(d2 >> 24) & 0xff] +
        _lut[d3 & 0xff] +
        _lut[(d3 >> 8) & 0xff] +
        _lut[(d3 >> 16) & 0xff] +
        _lut[(d3 >> 24) & 0xff]


    // .toLowerCase() here flattens concatenated strings to save heap memory space.
    return uuid.toLowerCase()
}

function clamp(value: number, min: number, max: number) {
    return Math.max(min, Math.min(max, value))
}

// compute euclidean modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
function euclideanModulo(n: number, m: number) {
    return ((n % m) + m) % m
}

// Linear mapping from range <a1, a2> to range <b1, b2>
function mapLinear(x: number, a1: number, a2: number, b1: number, b2: number) {
    return b1 + ((x - a1) * (b2 - b1)) / (a2 - a1)
}

// https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
function inverseLerp(x: number, y: number, value: number) {
    if (x !== y) {
        return (value - x) / (y - x)
    } else {
        return 0
    }
}

// https://en.wikipedia.org/wiki/Linear_interpolation
function lerp(x: number, y: number, t: number) {
    return (1 - t) * x + t * y
}


// http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
function damp(x: number, y: number, lambda: number, dt: number) {
    return lerp(x, y, 1 - Math.exp(-lambda * dt))
}

// https://www.desmos.com/calculator/vcsjnyz7x4
function pingpong(x: number, length = 1) {
    return length - Math.abs(euclideanModulo(x, length * 2) - length)
}

// http://en.wikipedia.org/wiki/Smoothstep
function smoothstep(x: number, min: number, max: number) {
    if (x <= min) return 0
    if (x >= max) return 1


    x = (x - min) / (max - min)

    return x * x * (3 - 2 * x)
}

function smootherstep(x: number, min: number, max: number) {
    if (x <= min) return 0
    if (x >= max) return 1

    x = (x - min) / (max - min)


    return x * x * x * (x * (x * 6 - 15) + 10)
}



// Random integer from <low, high> interval
function randInt(low: number, high: number) {
    return low + Math.floor(Math.random() * (high - low + 1))
}

// Random float from <low, high> interval
function randFloat(low: number, high: number) {
    return low + Math.random() * (high - low)
}


// Random float from <-range/2, range/2> interval
function randFloatSpread(range: number) {
    return range * (0.5 - Math.random())
}

// Deterministic pseudo-random float in the interval [ 0, 1 ]
function seededRandom(s: number) {
    if (s !== undefined) _seed = s

    // Mulberry32 generator


    let t = (_seed += 0x6d2b79f5)


    t = Math.imul(t ^ (t >>> 15), t | 1)


    t ^= t + Math.imul(t ^ (t >>> 7), t | 61)

    return ((t ^ (t >>> 14)) >>> 0) / 4294967296
}

function degToRad(degrees: number) {
    return degrees * DEG2RAD
}

function radToDeg(radians: number) {
    return radians * RAD2DEG
}

function isPowerOfTwo(value: number) {
    return (value & (value - 1)) === 0 && value !== 0
}


function ceilPowerOfTwo(value: number) {
    return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2))
}


function floorPowerOfTwo(value: number) {
    return Math.pow(2, Math.floor(Math.log(value) / Math.LN2))
}

export {
    DEG2RAD,
    RAD2DEG,
    generateUUID,
    clamp,
    euclideanModulo,
    mapLinear,
    inverseLerp,
    lerp,
    damp,
    pingpong,
    smoothstep,
    smootherstep,
    randInt,
    randFloat,
    randFloatSpread,
    seededRandom,
    degToRad,
    radToDeg,
    isPowerOfTwo,
    ceilPowerOfTwo,
    floorPowerOfTwo,
}

我在后面主要用到的就是generateUUID() 方法,用于生成一个基本上不可能重复的唯一id。

总结

向量、矩阵是图形学的基础,需要大家对其有一个透彻且扎实理解,推荐大家看一下闫令琪的games101

© 版权声明
THE END
喜欢就支持一下吧
点赞0

Warning: mysqli_query(): (HY000/3): Error writing file '/tmp/MYN5ijV0' (Errcode: 28 - No space left on device) in /www/wwwroot/583.cn/wp-includes/class-wpdb.php on line 2345
admin的头像-五八三
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

图形验证码
取消
昵称代码图片