? 我的环境:
- 语言环境:Python3.10.11
- 编译器:Jupyter Notebook
- 深度学习框架:Pytorch 2.0.1+cu118
- 显卡(GPU):NVIDIA GeForce RTX 4070
? 相关教程:
- 编译器教程:【新手入门深度学习 | 1-2:编译器Jupyter Notebook】
- 深度学习环境配置教程:【新手入门深度学习 | 1-1:配置深度学习环境】
- 一个深度学习小白需要的所有资料我都放这里了:【新手入门深度学习 | 目录】
建议你学习本文之前先看看下面这篇入门文章,以便你可以更好的理解本文:? 新手入门深度学习 | 2-1:图像数据建模流程示例
强烈建议大家使用Jupyter Notebook
编译器打开源码,你接下来的操作将会非常便捷的!
- 如果你是
深度学习小白
,阅读本文前建议先学习一下 ?《新手入门深度学习》 - 如果你有一定基础,但是
缺乏实战经验
,可通过 ?《深度学习100例》 补齐基础 - 另外,我们正在通过 ?365天深度学习训练营? 抱团学习,营内为大家提供系统的学习教案与专业的指导、非常良好的学习氛围,欢迎你的加入
?要求:
- 训练过程中保存效果最好的模型参数。
- 加载最佳模型参数识别本地的一张图片。
- 调整网络结构使测试集accuracy到达88%(重点)。
?拔高(可选):
- 调整模型参数并观察测试集的准确率变化。
- 尝试设置动态学习率。
- 测试集accuracy到达90%。
一、 前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
import torchimport torch.nn as nnimport torchvision.transforms as transformsimport torchvisionfrom torchvision import transforms, datasetsimport os,PIL,pathlibdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")deviceimport torch import torch.nn as nn import torchvision.transforms as transforms import torchvision from torchvision import transforms, datasets import os,PIL,pathlib device = torch.device("cuda" if torch.cuda.is_available() else "cpu") deviceimport torch import torch.nn as nn import torchvision.transforms as transforms import torchvision from torchvision import transforms, datasets import os,PIL,pathlib device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device
device(type='cuda')device(type='cuda')device(type='cuda')
2. 导入数据
import os,PIL,random,pathlibdata_dir = './4-data/'data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))classeNames = [str(path).split("\\")[1] for path in data_paths]classeNamesimport os,PIL,random,pathlib data_dir = './4-data/' data_dir = pathlib.Path(data_dir) data_paths = list(data_dir.glob('*')) classeNames = [str(path).split("\\")[1] for path in data_paths] classeNamesimport os,PIL,random,pathlib data_dir = './4-data/' data_dir = pathlib.Path(data_dir) data_paths = list(data_dir.glob('*')) classeNames = [str(path).split("\\")[1] for path in data_paths] classeNames
['Monkeypox', 'Others']['Monkeypox', 'Others']['Monkeypox', 'Others']
total_datadir = './4-data/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863train_transforms = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)total_datatotal_datadir = './4-data/' # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863 train_transforms = transforms.Compose([ transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸 transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间 transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。 ]) total_data = datasets.ImageFolder(total_datadir,transform=train_transforms) total_datatotal_datadir = './4-data/' # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863 train_transforms = transforms.Compose([ transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸 transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间 transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。 ]) total_data = datasets.ImageFolder(total_datadir,transform=train_transforms) total_data
Dataset ImageFolderNumber of datapoints: 2142Root location: ./4-data/StandardTransformTransform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))Dataset ImageFolder Number of datapoints: 2142 Root location: ./4-data/ StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )Dataset ImageFolder Number of datapoints: 2142 Root location: ./4-data/ StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )
total_data.class_to_idxtotal_data.class_to_idxtotal_data.class_to_idx
{'Monkeypox': 0, 'Others': 1}{'Monkeypox': 0, 'Others': 1}{'Monkeypox': 0, 'Others': 1}
3. 划分数据集
train_size = int(0.8 * len(total_data))test_size = len(total_data) - train_sizetrain_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])train_dataset, test_datasettrain_size = int(0.8 * len(total_data)) test_size = len(total_data) - train_size train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) train_dataset, test_datasettrain_size = int(0.8 * len(total_data)) test_size = len(total_data) - train_size train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x16dac6e3fd0>,<torch.utils.data.dataset.Subset at 0x16dac6e3e50>)(<torch.utils.data.dataset.Subset at 0x16dac6e3fd0>, <torch.utils.data.dataset.Subset at 0x16dac6e3e50>)(<torch.utils.data.dataset.Subset at 0x16dac6e3fd0>, <torch.utils.data.dataset.Subset at 0x16dac6e3e50>)
train_size,test_sizetrain_size,test_sizetrain_size,test_size
(1713, 429)(1713, 429)(1713, 429)
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=1)batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)breakfor X, y in test_dl: print("Shape of X [N, C, H, W]: ", X.shape) print("Shape of y: ", y.shape, y.dtype) breakfor X, y in test_dl: print("Shape of X [N, C, H, W]: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])Shape of y: torch.Size([32]) torch.int64Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64
二、构建简单的CNN网络
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool(x)x = F.relu(self.bn4(self.conv4(x)))x = F.relu(self.bn5(self.conv5(x)))x = self.pool(x)x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))model = Network_bn().to(device)modelimport torch.nn.functional as F class Network_bn(nn.Module): def __init__(self): super(Network_bn, self).__init__() """ nn.Conv2d()函数: 第一个参数(in_channels)是输入的channel数量 第二个参数(out_channels)是输出的channel数量 第三个参数(kernel_size)是卷积核大小 第四个参数(stride)是步长,默认为1 第五个参数(padding)是填充大小,默认为0 """ self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(12) self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn2 = nn.BatchNorm2d(12) self.pool = nn.MaxPool2d(2,2) self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn4 = nn.BatchNorm2d(24) self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn5 = nn.BatchNorm2d(24) self.fc1 = nn.Linear(24*50*50, len(classeNames)) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.pool(x) x = F.relu(self.bn4(self.conv4(x))) x = F.relu(self.bn5(self.conv5(x))) x = self.pool(x) x = x.view(-1, 24*50*50) x = self.fc1(x) return x device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) model = Network_bn().to(device) modelimport torch.nn.functional as F class Network_bn(nn.Module): def __init__(self): super(Network_bn, self).__init__() """ nn.Conv2d()函数: 第一个参数(in_channels)是输入的channel数量 第二个参数(out_channels)是输出的channel数量 第三个参数(kernel_size)是卷积核大小 第四个参数(stride)是步长,默认为1 第五个参数(padding)是填充大小,默认为0 """ self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(12) self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn2 = nn.BatchNorm2d(12) self.pool = nn.MaxPool2d(2,2) self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn4 = nn.BatchNorm2d(24) self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn5 = nn.BatchNorm2d(24) self.fc1 = nn.Linear(24*50*50, len(classeNames)) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.pool(x) x = F.relu(self.bn4(self.conv4(x))) x = F.relu(self.bn5(self.conv5(x))) x = self.pool(x) x = x.view(-1, 24*50*50) x = self.fc1(x) return x device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) model = Network_bn().to(device) model
Using cuda deviceNetwork_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=2, bias=True))Using cuda device Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=2, bias=True) )Using cuda device Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=2, bias=True) )
三、 训练模型
1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数learn_rate = 1e-4 # 学习率opt = torch.optim.SGD(model.parameters(),lr=learn_rate)loss_fn = nn.CrossEntropyLoss() # 创建损失函数 learn_rate = 1e-4 # 学习率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate)loss_fn = nn.CrossEntropyLoss() # 创建损失函数 learn_rate = 1e-4 # 学习率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数
# 训练循环def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset) # 训练集的大小,一共60000张图片num_batches = len(dataloader) # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X) # 网络输出loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad() # grad属性归零loss.backward() # 反向传播optimizer.step() # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss# 训练循环 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 训练集的大小,一共60000张图片 num_batches = len(dataloader) # 批次数目,1875(60000/32) train_loss, train_acc = 0, 0 # 初始化训练损失和正确率 for X, y in dataloader: # 获取图片及其标签 X, y = X.to(device), y.to(device) # 计算预测误差 pred = model(X) # 网络输出 loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失 # 反向传播 optimizer.zero_grad() # grad属性归零 loss.backward() # 反向传播 optimizer.step() # 每一步自动更新 # 记录acc与loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss# 训练循环 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 训练集的大小,一共60000张图片 num_batches = len(dataloader) # 批次数目,1875(60000/32) train_loss, train_acc = 0, 0 # 初始化训练损失和正确率 for X, y in dataloader: # 获取图片及其标签 X, y = X.to(device), y.to(device) # 计算预测误差 pred = model(X) # 网络输出 loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失 # 反向传播 optimizer.zero_grad() # grad属性归零 loss.backward() # 反向传播 optimizer.step() # 每一步自动更新 # 记录acc与loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss
3. 编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test (dataloader, model, loss_fn):size = len(dataloader.dataset) # 测试集的大小,一共10000张图片num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_lossdef test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 测试集的大小,一共10000张图片 num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整) test_loss, test_acc = 0, 0 # 当不进行训练时,停止梯度更新,节省计算内存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 计算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_lossdef test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 测试集的大小,一共10000张图片 num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整) test_loss, test_acc = 0, 0 # 当不进行训练时,停止梯度更新,节省计算内存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 计算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_loss
4. 正式训练
epochs = 20train_loss = []train_acc = []test_loss = []test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))print('Done')epochs = 20 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss)) print('Done')epochs = 20 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss)) print('Done')
Epoch: 1, Train_acc:60.8%, Train_loss:0.655, Test_acc:60.6%,Test_loss:0.668Epoch: 2, Train_acc:70.2%, Train_loss:0.575, Test_acc:72.7%,Test_loss:0.560Epoch: 3, Train_acc:74.5%, Train_loss:0.527, Test_acc:71.3%,Test_loss:0.549Epoch: 4, Train_acc:78.4%, Train_loss:0.483, Test_acc:73.4%,Test_loss:0.519....Epoch:18, Train_acc:91.4%, Train_loss:0.271, Test_acc:83.0%,Test_loss:0.382Epoch:19, Train_acc:92.6%, Train_loss:0.260, Test_acc:83.7%,Test_loss:0.381Epoch:20, Train_acc:92.1%, Train_loss:0.260, Test_acc:82.3%,Test_loss:0.396DoneEpoch: 1, Train_acc:60.8%, Train_loss:0.655, Test_acc:60.6%,Test_loss:0.668 Epoch: 2, Train_acc:70.2%, Train_loss:0.575, Test_acc:72.7%,Test_loss:0.560 Epoch: 3, Train_acc:74.5%, Train_loss:0.527, Test_acc:71.3%,Test_loss:0.549 Epoch: 4, Train_acc:78.4%, Train_loss:0.483, Test_acc:73.4%,Test_loss:0.519 .... Epoch:18, Train_acc:91.4%, Train_loss:0.271, Test_acc:83.0%,Test_loss:0.382 Epoch:19, Train_acc:92.6%, Train_loss:0.260, Test_acc:83.7%,Test_loss:0.381 Epoch:20, Train_acc:92.1%, Train_loss:0.260, Test_acc:82.3%,Test_loss:0.396 DoneEpoch: 1, Train_acc:60.8%, Train_loss:0.655, Test_acc:60.6%,Test_loss:0.668 Epoch: 2, Train_acc:70.2%, Train_loss:0.575, Test_acc:72.7%,Test_loss:0.560 Epoch: 3, Train_acc:74.5%, Train_loss:0.527, Test_acc:71.3%,Test_loss:0.549 Epoch: 4, Train_acc:78.4%, Train_loss:0.483, Test_acc:73.4%,Test_loss:0.519 .... Epoch:18, Train_acc:91.4%, Train_loss:0.271, Test_acc:83.0%,Test_loss:0.382 Epoch:19, Train_acc:92.6%, Train_loss:0.260, Test_acc:83.7%,Test_loss:0.381 Epoch:20, Train_acc:92.1%, Train_loss:0.260, Test_acc:82.3%,Test_loss:0.396 Done
四、 结果可视化
1. Loss与Accuracy图
import matplotlib.pyplot as plt#隐藏警告import warningswarnings.filterwarnings("ignore") #忽略警告信息plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号plt.rcParams['figure.dpi'] = 100 #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')plt.plot(epochs_range, test_acc, label='Test Accuracy')plt.legend(loc='lower right')plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)plt.plot(epochs_range, train_loss, label='Training Loss')plt.plot(epochs_range, test_loss, label='Test Loss')plt.legend(loc='upper right')plt.title('Training and Validation Loss')plt.show()import matplotlib.pyplot as plt #隐藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()import matplotlib.pyplot as plt #隐藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()
2. 指定图片进行预测
⭐torch.squeeze()详解
对数据的维度进行压缩,去掉维数为1的的维度
函数原型:
torch.squeeze(input, dim=None, *, out=None)
关键参数说明:
- input (Tensor):输入Tensor
- dim (int, optional):如果给定,输入将只在这个维度上被压缩
实战案例:
>>> x = torch.zeros(2, 1, 2, 1, 2)>>> x.size()torch.Size([2, 1, 2, 1, 2])>>> y = torch.squeeze(x)>>> y.size()torch.Size([2, 2, 2])>>> y = torch.squeeze(x, 0)>>> y.size()torch.Size([2, 1, 2, 1, 2])>>> y = torch.squeeze(x, 1)>>> y.size()torch.Size([2, 2, 1, 2])>>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2])>>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2])
⭐torch.unsqueeze()
对数据维度进行扩充。给指定位置加上维数为一的维度
函数原型:
torch.unsqueeze(input, dim)
关键参数说明:
- input (Tensor):输入Tensor
- dim (int):插入单例维度的索引
实战案例:
>>> x = torch.tensor([1, 2, 3, 4])>>> torch.unsqueeze(x, 0)tensor([[ 1, 2, 3, 4]])>>> torch.unsqueeze(x, 1)tensor([[ 1],[ 2],[ 3],[ 4]])>>> x = torch.tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) tensor([[ 1, 2, 3, 4]]) >>> torch.unsqueeze(x, 1) tensor([[ 1], [ 2], [ 3], [ 4]])>>> x = torch.tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) tensor([[ 1, 2, 3, 4]]) >>> torch.unsqueeze(x, 1) tensor([[ 1], [ 2], [ 3], [ 4]])
from PIL import Imageclasses = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img) # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')from PIL import Image classes = list(total_data.class_to_idx) def predict_one_image(image_path, model, transform, classes): test_img = Image.open(image_path).convert('RGB') # plt.imshow(test_img) # 展示预测的图片 test_img = transform(test_img) img = test_img.to(device).unsqueeze(0) model.eval() output = model(img) _,pred = torch.max(output,1) pred_class = classes[pred] print(f'预测结果是:{pred_class}')from PIL import Image classes = list(total_data.class_to_idx) def predict_one_image(image_path, model, transform, classes): test_img = Image.open(image_path).convert('RGB') # plt.imshow(test_img) # 展示预测的图片 test_img = transform(test_img) img = test_img.to(device).unsqueeze(0) model.eval() output = model(img) _,pred = torch.max(output,1) pred_class = classes[pred] print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg',model=model,transform=train_transforms,classes=classes)# 预测训练集中的某张照片 predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg', model=model, transform=train_transforms, classes=classes)# 预测训练集中的某张照片 predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg', model=model, transform=train_transforms, classes=classes)
预测结果是:Monkeypox预测结果是:Monkeypox预测结果是:Monkeypox
五、保存并加载模型
# 模型保存PATH = './model.pth' # 保存的参数文件名torch.save(model.state_dict(), PATH)# 将参数加载到model当中model.load_state_dict(torch.load(PATH, map_location=device))# 模型保存 PATH = './model.pth' # 保存的参数文件名 torch.save(model.state_dict(), PATH) # 将参数加载到model当中 model.load_state_dict(torch.load(PATH, map_location=device))# 模型保存 PATH = './model.pth' # 保存的参数文件名 torch.save(model.state_dict(), PATH) # 将参数加载到model当中 model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully><All keys matched successfully><All keys matched successfully>
© 版权声明
文章版权归作者所有,未经允许请勿转载,侵权请联系 admin@trc20.tw 删除。
THE END