【机器学习】单变量线性回归

1|0ML introduction

机器学习:从数据中学习,而不依赖于规则下编程的一种算法

Goal: minw,b(J(w,b)) – 提供一种衡量一组特定参数与训练数据拟合程度的方法

1|1Supervised Learning

right answer && x -> y label

categories

  • Regression
  • Classification

1|2Unsupervised Learning

structure || pattern

categories

  • Clustering
  • Anomaly detection 异常检测
  • Dimensionality reduction 降维

2|0Liner Regression with One Variable

预测数字问题

这部分主要内容包括单变量线性回归的模型表示、代价函数、梯度下降法和使用梯度下降法求解代价函数的最小值。

2|1线性回归模型


1|0数学表达式

fw,b(x(i))=wx(i)+b

1|0代码

ndarray:n维数组类对象

scalar:标量

# 迭代 def compute_model_output(x, w, b): """ Computes the prediction of a linear model Args: x (ndarray (m,)): Data, m examples w,b (scalar) : model parameters Returns y (ndarray (m,)): target values """ m = x.shape[0] f_wb = np.zeros(m) for i in range(m): f_wb[i] = w * x[i] + b return f_wb

# 向量 def compute_model_output(x, w, b): """ single predict using linear regression Args: x (ndarray): Shape (n,) example with multiple features w (ndarray): Shape (n,) model parameters b (scalar): model parameter Returns: p (scalar): prediction """ yhat = np.dot(x, w) + b return yhat

2|2Cost Function


1|0数学表达式

J(w,b)=12mi=1m(fw,b(x(i))y(i))2

fw,b(x(i))=wx(i)+b

参数表:

m y error
训练样例 真值 fw,b(x(i))y(i)

1|0代码


# 迭代 def compute_cost(x, y, w, b): """ Computes the cost function for linear regression. Args: x (ndarray (m,)): Data, m examples y (ndarray (m,)): target values w,b (scalar) : model parameters Returns total_cost (float): The cost of using w,b as the parameters for linear regression to fit the data points in x and y """ # number of training examples m = x.shape[0] cost_sum = 0 for i in range(m): f_wb = w * x[i] + b cost = (f_wb - y[i]) ** 2 cost_sum = cost_sum + cost total_cost = (1 / (2 * m)) * cost_sum return total_cost

# 向量 def compute_cost(X, y, theta): """ Computes the cost function for linear regression. Args: X (ndarray (m,)): Data, m examples y (ndarray (m,)): target values theta (b (ndarray (m,), w (ndarray (m,))): model parameters Returns total_cost (float): The cost of using theta as the parameters for linear regression to fit the data points in X and y """ error = (X * theta.T) - y inner = np.power(error, 2) total_cost = np.sum(inner)/(2 * len(X)) return total_cost

1|0数学原理

求导:不同的w对应不同的J,对多个点拟合出的曲线求导,以期找到最小的J对应的w

function of w

function of w

function of w

function of w

function of w

2|3Gradient Descent

(迭代)=> 极值点

大样本:每次梯度更新都抽部分样本

1|0数学表达式

repeat until convergence:{w=wαJ(w,b)wb=bαJ(w,b)b}

(1)J(w,b)w=1mi=0m1(fw,b(x(i))y(i))x(i)(2)J(w,b)b=1mi=0m1(fw,b(x(i))y(i))

α: 学习率,控制更新模型参数w和b时采取的步骤大小

1|0代码


# 迭代 def compute_gradient(x, y, w, b): """ Computes the gradient for linear regression Args: x (ndarray (m,)): Data, m examples y (ndarray (m,)): target values w,b (scalar) : model parameters Returns dj_dw (scalar): The gradient of the cost w.r.t. the parameters w dj_db (scalar): The gradient of the cost w.r.t. the parameter b """ # Number of training examples m = x.shape[0] dj_dw = 0 dj_db = 0 for i in range(m): f_wb = w * x[i] + b dj_dw_i = (f_wb - y[i]) * x[i] dj_db_i = f_wb - y[i] dj_db += dj_db_i dj_dw += dj_dw_i dj_dw = dj_dw / m dj_db = dj_db / m return dj_dw, dj_db def gradient_descent(x, y, w_in, b_in, alpha, num_iters, cost_function, gradient_function): """ Performs gradient descent to fit w,b. Updates w,b by taking num_iters gradient steps with learning rate alpha Args: x (ndarray (m,)) : Data, m examples y (ndarray (m,)) : target values w_in,b_in (scalar): initial values of model parameters alpha (float): Learning rate num_iters (int): number of iterations to run gradient descent cost_function: function to call to produce cost gradient_function: function to call to produce gradient Returns: w (scalar): Updated value of parameter after running gradient descent b (scalar): Updated value of parameter after running gradient descent J_history (List): History of cost values p_history (list): History of parameters [w,b] """ w = copy.deepcopy(w_in) # avoid modifying global w_in # An array to store cost J and w's at each iteration primarily for graphing later J_history = [] p_history = [] b = b_in w = w_in for i in range(num_iters): # Calculate the gradient and update the parameters using gradient_function dj_dw, dj_db = gradient_function(x, y, w , b) # Update Parameters using equation (3) above b = b - alpha * dj_db w = w - alpha * dj_dw # Save cost J at each iteration if i<100000: # prevent resource exhaustion J_history.append( cost_function(x, y, w , b)) p_history.append([w,b]) # Print cost every at intervals 10 times or as many iterations if < 10 if i% math.ceil(num_iters/10) == 0: print(f"Iteration {i:4}: Cost {J_history[-1]:0.2e} ", f"dj_dw: {dj_dw: 0.3e}, dj_db: {dj_db: 0.3e} ", f"w: {w: 0.3e}, b:{b: 0.5e}") return w, b, J_history, p_history #return w and J,w history for graphing

# 向量 def gradient_descent(X, y, theta, alpha, iters): """ Performs gradient descent to fit w,b. Updates w,b by taking num_iters gradient steps with learning rate alpha Args: X (ndarray (m,)) : Data, m examples y (ndarray (m,)) : target values theta (ndarray (m,)): initial values of model parameters alpha (float) : Learning rate iters (scalar) : number of interations Returns: theta (ndarray (m,)): Updated parameter of parameter after running gradient descent cost (ndarray (m,)) : Record the cost after each iteration """ tmp = np.matrix(np.zeros(theta.shape)) # 构造零值矩阵 parameters = int(theta.ravel().shape[1]) # theta的列即参数的个数 cost = np.zeros(iters) # 构建iters个()的数组 # 迭代 for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) # 求内积 np.multiply tmp[0, j] = theta[0, j] - ((alpha / len(X) * np.sum(term))) theta = tmp cost[i] = computeCost(X, y, theta) return theta, cost

1|0数学原理

(w和b要同时更新)

2|4最小二乘法

形式:

=sum()2

解法:https://www.cnblogs.com/pinard/p/5976811.html

  • 代数法:偏导数求最值
  • 矩阵法:normal equation(有局限性)

__EOF__

本文作者MrFeng
本文链接https://www.cnblogs.com/MrFeng2997/p/17592008.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!

© 版权声明
THE END
喜欢就支持一下吧
点赞0

Warning: mysqli_query(): (HY000/3): Error writing file '/tmp/MY1v8TPl' (Errcode: 28 - No space left on device) in /www/wwwroot/583.cn/wp-includes/class-wpdb.php on line 2345
admin的头像-五八三
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

图形验证码
取消
昵称代码图片