Parallel 与 ConcurrentBag<T> 这对儿黄金搭档


〇、前言

日常开发中经常会遇到数据统计,特别是关于报表的项目。数据处理的效率和准确度当然是首要关注点。

本文主要介绍,如何通过 Parallel 来并行处理数据,并组合 ConcurrentBag<T> 集合,来将处理效率达到高点的同时,也能确保数据的准确。

一、ConcurrentBag<T> 简介

1、简介与源码

ConcurrentBag<T>,表示对象的线程安全的无序集合。ConcurrentBag 内部将数据按线程的标识独立进行存储,程序可以在同一个线程中插入、删除元素,所以每个线程对其数据的操作是非常快的。

下面是源码供参考:

点击展开 ConcurrentBag 源码
// System.Collections.Concurrent, Version=5.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a// System.Collections.Concurrent.ConcurrentBag<T>using System;using System.Collections;using System.Collections.Concurrent;using System.Collections.Generic;using System.Diagnostics;using System.Diagnostics.CodeAnalysis;using System.Threading; [DebuggerTypeProxy(typeof(System.Collections.Concurrent.IProducerConsumerCollectionDebugView<>))][DebuggerDisplay("Count = {Count}")]public class ConcurrentBag<T> : IProducerConsumerCollection<T>, IEnumerable<T>, IEnumerable, ICollection, IReadOnlyCollection<T>{	private sealed class WorkStealingQueue	{		private volatile int _headIndex; 		private volatile int _tailIndex; 		private volatile T[] _array = new T[32]; 		private volatile int _mask = 31; 		private int _addTakeCount; 		private int _stealCount; 		internal volatile int _currentOp; 		internal bool _frozen; 		internal readonly WorkStealingQueue _nextQueue; 		internal readonly int _ownerThreadId; 		internal bool IsEmpty => _headIndex - _tailIndex >= 0; 		internal int DangerousCount		{			get			{				int stealCount = _stealCount;				int addTakeCount = _addTakeCount;				return addTakeCount - stealCount;			}		} 		internal WorkStealingQueue(WorkStealingQueue nextQueue)		{			_ownerThreadId = Environment.CurrentManagedThreadId;			_nextQueue = nextQueue;		} 		internal void LocalPush(T item, ref long emptyToNonEmptyListTransitionCount)		{			bool lockTaken = false;			try			{				Interlocked.Exchange(ref _currentOp, 1);				int num = _tailIndex;				if (num == int.MaxValue)				{					_currentOp = 0;					lock (this)					{						_headIndex &= _mask;						num = (_tailIndex = num & _mask);						Interlocked.Exchange(ref _currentOp, 1);					}				}				int headIndex = _headIndex;				if (!_frozen && headIndex - (num - 1) < 0 && num - (headIndex + _mask) < 0)				{					_array[num & _mask] = item;					_tailIndex = num + 1;				}				else				{					_currentOp = 0;					Monitor.Enter(this, ref lockTaken);					headIndex = _headIndex;					int num2 = num - headIndex;					if (num2 >= _mask)					{						T[] array = new T[_array.Length << 1];						int num3 = headIndex & _mask;						if (num3 == 0)						{							Array.Copy(_array, array, _array.Length);						}						else						{							Array.Copy(_array, num3, array, 0, _array.Length - num3);							Array.Copy(_array, 0, array, _array.Length - num3, num3);						}						_array = array;						_headIndex = 0;						num = (_tailIndex = num2);						_mask = (_mask << 1) | 1;					}					_array[num & _mask] = item;					_tailIndex = num + 1;					if (num2 == 0)					{						Interlocked.Increment(ref emptyToNonEmptyListTransitionCount);					}					_addTakeCount -= _stealCount;					_stealCount = 0;				}				checked				{					_addTakeCount++;				}			}			finally			{				_currentOp = 0;				if (lockTaken)				{					Monitor.Exit(this);				}			}		} 		internal void LocalClear()		{			lock (this)			{				if (_headIndex - _tailIndex < 0)				{					_headIndex = (_tailIndex = 0);					_addTakeCount = (_stealCount = 0);					Array.Clear(_array, 0, _array.Length);				}			}		} 		internal bool TryLocalPop([MaybeNullWhen(false)] out T result)		{			int tailIndex = _tailIndex;			if (_headIndex - tailIndex >= 0)			{				result = default(T);				return false;			}			bool lockTaken = false;			try			{				_currentOp = 2;				Interlocked.Exchange(ref _tailIndex, --tailIndex);				if (!_frozen && _headIndex - tailIndex < 0)				{					int num = tailIndex & _mask;					result = _array[num];					_array[num] = default(T);					_addTakeCount--;					return true;				}				_currentOp = 0;				Monitor.Enter(this, ref lockTaken);				if (_headIndex - tailIndex <= 0)				{					int num2 = tailIndex & _mask;					result = _array[num2];					_array[num2] = default(T);					_addTakeCount--;					return true;				}				_tailIndex = tailIndex + 1;				result = default(T);				return false;			}			finally			{				_currentOp = 0;				if (lockTaken)				{					Monitor.Exit(this);				}			}		} 		internal bool TryLocalPeek([MaybeNullWhen(false)] out T result)		{			int tailIndex = _tailIndex;			if (_headIndex - tailIndex < 0)			{				lock (this)				{					if (_headIndex - tailIndex < 0)					{						result = _array[(tailIndex - 1) & _mask];						return true;					}				}			}			result = default(T);			return false;		} 		internal bool TrySteal([MaybeNullWhen(false)] out T result, bool take)		{			lock (this)			{				int headIndex = _headIndex;				if (take)				{					if (headIndex - (_tailIndex - 2) >= 0 && _currentOp == 1)					{						SpinWait spinWait = default(SpinWait);						do						{							spinWait.SpinOnce();						}						while (_currentOp == 1);					}					Interlocked.Exchange(ref _headIndex, headIndex + 1);					if (headIndex < _tailIndex)					{						int num = headIndex & _mask;						result = _array[num];						_array[num] = default(T);						_stealCount++;						return true;					}					_headIndex = headIndex;				}				else if (headIndex < _tailIndex)				{					result = _array[headIndex & _mask];					return true;				}			}			result = default(T);			return false;		} 		internal int DangerousCopyTo(T[] array, int arrayIndex)		{			int headIndex = _headIndex;			int dangerousCount = DangerousCount;			for (int num = arrayIndex + dangerousCount - 1; num >= arrayIndex; num--)			{				array[num] = _array[headIndex++ & _mask];			}			return dangerousCount;		}	} 	private sealed class Enumerator : IEnumerator<T>, IDisposable, IEnumerator	{		private readonly T[] _array; 		private T _current; 		private int _index; 		public T Current => _current; 		object IEnumerator.Current		{			get			{				if (_index == 0 || _index == _array.Length + 1)				{					throw new InvalidOperationException(System.SR.ConcurrentBag_Enumerator_EnumerationNotStartedOrAlreadyFinished);				}				return Current;			}		} 		public Enumerator(T[] array)		{			_array = array;		} 		public bool MoveNext()		{			if (_index < _array.Length)			{				_current = _array[_index++];				return true;			}			_index = _array.Length + 1;			return false;		} 		public void Reset()		{			_index = 0;			_current = default(T);		} 		public void Dispose()		{		}	} 	private readonly ThreadLocal<WorkStealingQueue> _locals; 	private volatile WorkStealingQueue _workStealingQueues; 	private long _emptyToNonEmptyListTransitionCount; 	public int Count	{		get		{			if (_workStealingQueues == null)			{				return 0;			}			bool lockTaken = false;			try			{				FreezeBag(ref lockTaken);				return DangerousCount;			}			finally			{				UnfreezeBag(lockTaken);			}		}	} 	private int DangerousCount	{		get		{			int num = 0;			for (WorkStealingQueue workStealingQueue = _workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)			{				num = checked(num + workStealingQueue.DangerousCount);			}			return num;		}	} 	public bool IsEmpty	{		get		{			WorkStealingQueue currentThreadWorkStealingQueue = GetCurrentThreadWorkStealingQueue(forceCreate: false);			if (currentThreadWorkStealingQueue != null)			{				if (!currentThreadWorkStealingQueue.IsEmpty)				{					return false;				}				if (currentThreadWorkStealingQueue._nextQueue == null && currentThreadWorkStealingQueue == _workStealingQueues)				{					return true;				}			}			bool lockTaken = false;			try			{				FreezeBag(ref lockTaken);				for (WorkStealingQueue workStealingQueue = _workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)				{					if (!workStealingQueue.IsEmpty)					{						return false;					}				}			}			finally			{				UnfreezeBag(lockTaken);			}			return true;		}	} 	bool ICollection.IsSynchronized => false; 	object ICollection.SyncRoot	{		get		{			throw new NotSupportedException(System.SR.ConcurrentCollection_SyncRoot_NotSupported);		}	} 	private object GlobalQueuesLock => _locals; 	public ConcurrentBag()	{		_locals = new ThreadLocal<WorkStealingQueue>();	} 	public ConcurrentBag(IEnumerable<T> collection)	{		if (collection == null)		{			throw new ArgumentNullException("collection", System.SR.ConcurrentBag_Ctor_ArgumentNullException);		}		_locals = new ThreadLocal<WorkStealingQueue>();		WorkStealingQueue currentThreadWorkStealingQueue = GetCurrentThreadWorkStealingQueue(forceCreate: true);		foreach (T item in collection)		{			currentThreadWorkStealingQueue.LocalPush(item, ref _emptyToNonEmptyListTransitionCount);		}	} 	public void Add(T item)	{		GetCurrentThreadWorkStealingQueue(forceCreate: true).LocalPush(item, ref _emptyToNonEmptyListTransitionCount);	} 	bool IProducerConsumerCollection<T>.TryAdd(T item)	{		Add(item);		return true;	} 	public bool TryTake([MaybeNullWhen(false)] out T result)	{		WorkStealingQueue currentThreadWorkStealingQueue = GetCurrentThreadWorkStealingQueue(forceCreate: false);		if (currentThreadWorkStealingQueue == null || !currentThreadWorkStealingQueue.TryLocalPop(out result))		{			return TrySteal(out result, take: true);		}		return true;	} 	public bool TryPeek([MaybeNullWhen(false)] out T result)	{		WorkStealingQueue currentThreadWorkStealingQueue = GetCurrentThreadWorkStealingQueue(forceCreate: false);		if (currentThreadWorkStealingQueue == null || !currentThreadWorkStealingQueue.TryLocalPeek(out result))		{			return TrySteal(out result, take: false);		}		return true;	} 	private WorkStealingQueue GetCurrentThreadWorkStealingQueue(bool forceCreate)	{		WorkStealingQueue workStealingQueue = _locals.Value;		if (workStealingQueue == null)		{			if (!forceCreate)			{				return null;			}			workStealingQueue = CreateWorkStealingQueueForCurrentThread();		}		return workStealingQueue;	} 	private WorkStealingQueue CreateWorkStealingQueueForCurrentThread()	{		lock (GlobalQueuesLock)		{			WorkStealingQueue workStealingQueues = _workStealingQueues;			WorkStealingQueue workStealingQueue = ((workStealingQueues != null) ? GetUnownedWorkStealingQueue() : null);			if (workStealingQueue == null)			{				workStealingQueue = (_workStealingQueues = new WorkStealingQueue(workStealingQueues));			}			_locals.Value = workStealingQueue;			return workStealingQueue;		}	} 	private WorkStealingQueue GetUnownedWorkStealingQueue()	{		int currentManagedThreadId = Environment.CurrentManagedThreadId;		for (WorkStealingQueue workStealingQueue = _workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)		{			if (workStealingQueue._ownerThreadId == currentManagedThreadId)			{				return workStealingQueue;			}		}		return null;	} 	private bool TrySteal([MaybeNullWhen(false)] out T result, bool take)	{		if (CDSCollectionETWBCLProvider.Log.IsEnabled())		{			if (take)			{				CDSCollectionETWBCLProvider.Log.ConcurrentBag_TryTakeSteals();			}			else			{				CDSCollectionETWBCLProvider.Log.ConcurrentBag_TryPeekSteals();			}		}		while (true)		{			long num = Interlocked.Read(ref _emptyToNonEmptyListTransitionCount);			WorkStealingQueue currentThreadWorkStealingQueue = GetCurrentThreadWorkStealingQueue(forceCreate: false);			bool num2;			if (currentThreadWorkStealingQueue != null)			{				if (TryStealFromTo(currentThreadWorkStealingQueue._nextQueue, null, out result, take))				{					goto IL_0078;				}				num2 = TryStealFromTo(_workStealingQueues, currentThreadWorkStealingQueue, out result, take);			}			else			{				num2 = TryStealFromTo(_workStealingQueues, null, out result, take);			}			if (!num2)			{				if (Interlocked.Read(ref _emptyToNonEmptyListTransitionCount) == num)				{					break;				}				continue;			}			goto IL_0078;			IL_0078:			return true;		}		return false;	} 	private bool TryStealFromTo(WorkStealingQueue startInclusive, WorkStealingQueue endExclusive, [MaybeNullWhen(false)] out T result, bool take)	{		for (WorkStealingQueue workStealingQueue = startInclusive; workStealingQueue != endExclusive; workStealingQueue = workStealingQueue._nextQueue)		{			if (workStealingQueue.TrySteal(out result, take))			{				return true;			}		}		result = default(T);		return false;	} 	public void CopyTo(T[] array, int index)	{		if (array == null)		{			throw new ArgumentNullException("array", System.SR.ConcurrentBag_CopyTo_ArgumentNullException);		}		if (index < 0)		{			throw new ArgumentOutOfRangeException("index", System.SR.Collection_CopyTo_ArgumentOutOfRangeException);		}		if (_workStealingQueues == null)		{			return;		}		bool lockTaken = false;		try		{			FreezeBag(ref lockTaken);			int dangerousCount = DangerousCount;			if (index > array.Length - dangerousCount)			{				throw new ArgumentException(System.SR.Collection_CopyTo_TooManyElems, "index");			}			try			{				int num = CopyFromEachQueueToArray(array, index);			}			catch (ArrayTypeMismatchException ex)			{				throw new InvalidCastException(ex.Message, ex);			}		}		finally		{			UnfreezeBag(lockTaken);		}	} 	private int CopyFromEachQueueToArray(T[] array, int index)	{		int num = index;		for (WorkStealingQueue workStealingQueue = _workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)		{			num += workStealingQueue.DangerousCopyTo(array, num);		}		return num - index;	} 	void ICollection.CopyTo(Array array, int index)	{		if (array is T[] array2)		{			CopyTo(array2, index);			return;		}		if (array == null)		{			throw new ArgumentNullException("array", System.SR.ConcurrentBag_CopyTo_ArgumentNullException);		}		ToArray().CopyTo(array, index);	} 	public T[] ToArray()	{		if (_workStealingQueues != null)		{			bool lockTaken = false;			try			{				FreezeBag(ref lockTaken);				int dangerousCount = DangerousCount;				if (dangerousCount > 0)				{					T[] array = new T[dangerousCount];					int num = CopyFromEachQueueToArray(array, 0);					return array;				}			}			finally			{				UnfreezeBag(lockTaken);			}		}		return Array.Empty<T>();	} 	public void Clear()	{		if (_workStealingQueues == null)		{			return;		}		WorkStealingQueue currentThreadWorkStealingQueue = GetCurrentThreadWorkStealingQueue(forceCreate: false);		if (currentThreadWorkStealingQueue != null)		{			currentThreadWorkStealingQueue.LocalClear();			if (currentThreadWorkStealingQueue._nextQueue == null && currentThreadWorkStealingQueue == _workStealingQueues)			{				return;			}		}		bool lockTaken = false;		try		{			FreezeBag(ref lockTaken);			for (WorkStealingQueue workStealingQueue = _workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)			{				T result;				while (workStealingQueue.TrySteal(out result, take: true))				{				}			}		}		finally		{			UnfreezeBag(lockTaken);		}	} 	public IEnumerator<T> GetEnumerator()	{		return new Enumerator(ToArray());	} 	IEnumerator IEnumerable.GetEnumerator()	{		return GetEnumerator();	} 	private void FreezeBag(ref bool lockTaken)	{		Monitor.Enter(GlobalQueuesLock, ref lockTaken);		WorkStealingQueue workStealingQueues = _workStealingQueues;		for (WorkStealingQueue workStealingQueue = workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)		{			Monitor.Enter(workStealingQueue, ref workStealingQueue._frozen);		}		Interlocked.MemoryBarrier();		for (WorkStealingQueue workStealingQueue2 = workStealingQueues; workStealingQueue2 != null; workStealingQueue2 = workStealingQueue2._nextQueue)		{			if (workStealingQueue2._currentOp != 0)			{				SpinWait spinWait = default(SpinWait);				do				{					spinWait.SpinOnce();				}				while (workStealingQueue2._currentOp != 0);			}		}	} 	private void UnfreezeBag(bool lockTaken)	{		if (!lockTaken)		{			return;		}		for (WorkStealingQueue workStealingQueue = _workStealingQueues; workStealingQueue != null; workStealingQueue = workStealingQueue._nextQueue)		{			if (workStealingQueue._frozen)			{				workStealingQueue._frozen = false;				Monitor.Exit(workStealingQueue);			}		}		Monitor.Exit(GlobalQueuesLock);	}}

2、属性

Count

  获取 ConcurrentBag<T> 中包含的元素数

IsEmpty

  获取一个值,该值指示 ConcurrentBag<T> 是否为空

3、方法

Add(T)

  将对象添加到 ConcurrentBag<T> 中。

Clear()

  从 ConcurrentBag<T> 中删除所有值。

CopyTo(T[], Int32)

  从指定数组索引开始将 ConcurrentBag<T> 元素复制到现有一维 Array 中。以下示例代码:

ConcurrentBag<TempModel> tempModels = new ConcurrentBag<TempModel>();tempModels.Add(new TempModel() { Code = "1", Name = "一" });tempModels.Add(new TempModel() { Code = "2", Name = "二" });tempModels.Add(new TempModel() { Code = "3", Name = "三" });TempModel[] temparr = new TempModel[5];tempModels.CopyTo(temparr, 1);

  输出结果为:

  

TryPeek(T)

  尝试从 ConcurrentBag<T> 返回一个对象但不移除该对象。

TryTake(T)

  尝试从 ConcurrentBag<T> 中移除和返回一个对象。

ToString()

  返回表示当前对象的字符串。测试值:System.Collections.Concurrent.ConcurrentBag`1[Test.ConsoleApp.TempModel]

ToArray()

  将 ConcurrentBag<T> 元素复制到新数组。

GetEnumerator()

  获取当前时间的枚举器。 调用后不影响集合的任何更新。枚举器可以安全地与读取、写入 ConcurrentBag<T> 同时使用。

GetHashCode()

  获取集合的哈希值。

参考:https://learn.microsoft.com/zh-cn/dotnet/api/system.collections.concurrent.concurrentbag-1?view=net-5.0

  C# ConcurrentBag的实现原理

4、List<T> 和 ConcurrentBag<T> 对比

众所周知,List<T> 集合是非线程安全的,所以我们采用并行编程时会发生丢数据的情况。比如我们通过多线程将一千个对象加入 List<T>,我们最终得到的集合中元素数就会小于一千。

如下测试代码,通过多任务对象 Task 实现将一千个对象加入到 List<T> 中,添加了一千次,但实际上最终的 objects.Count() 值为 913,小于 1000。 但如果将集合名称改成 ConcurrentBag<T>,结果就不会丢失,最终为等于 1000。

static void Main(string[] args){    try    {        // List<MyObject> objects = new List<MyObject>();        ConcurrentBag<MyObject> objects = new ConcurrentBag<MyObject>();        Task[] tasks = new Task[1000];        for (int i = 0; i < 1000; i++)        {            tasks[i] = Task.Run(() =>                 objects.Add(new MyObject() { Name = "1", Threadnum = Thread.GetCurrentProcessorId() }));        }        Task.WaitAll(tasks); // 等待所有任务完成        Console.WriteLine(objects.Count()); // List<T>:913; ConcurrentBag<T>:1000        Console.ReadLine();    }    catch (Exception ex)    {    }}public class MyObject{    public string Name { get; set; }    public int Threadnum { get; set; }}

二、Parallel 的使用

任务并行库(TPL)支持通过 System.Threading.Tasks.Parallel 类实现数据操作的并行。Parallel.For 或 Parallel.ForEach 编写的循环逻辑与常见的 for 和 foreach 类似,只是增加并行逻辑,来提升效率。TPL 省去了客户端创建线程或列工作项,同时在基本循环中,不需要加锁,TPL 会处理所有低级别的工作。

常用的方法有 Parallel.For、Parallel.ForEach、Parallel.Invoke 等,下面将一一例举。

1、Parallel.For()

1.1 重载一:Parallel.For(Int32, Int32, Action<Int32>)

// fromInclusive:开始索引(含) toExclusive:结束索引(不含) body:不允许为 nullpublic static System.Threading.Tasks.ParallelLoopResult For (int fromInclusive, int toExclusive, Action<int> body);

以下示例使用 For 方法调用 100 个委托,该委托生成随机 Byte 值,并计算其总和:

ParallelLoopResult result = Parallel.For(0, 100,    ctr =>    {        //Random rnd = new Random(ctr * 100000); // public Random(int Seed); // 随机数的种子,若种子相同,多次生成的随机数序列值相同        Random rnd = new Random();        Byte[] bytes = new Byte[100]; // Byte 数组,每个值的范围为 0~255        rnd.NextBytes(bytes); // 生成 100 个 Byte 数值        int sum = 0;        foreach (var byt in bytes) // 再将生成的 100 个数值相加            sum += byt;        Console.WriteLine("Iteration {0,2}: {1:N0}", ctr, sum);    });Console.WriteLine("Result: Completed Normally");

1.2 比较执行效率 Parallel.For() 和 for()

Paraller.For() 方法类似于 for 循环语句,也是根据入参多次执行同一逻辑操作。使用 Paraller.For() 方法,可以无序的并行运行迭代,而 for 循环只能根据既定的顺序串行运行。

如下实例,对比 Parallel.For() 和 for() 循环的执行效率进行比较:

// 进行 5 此对比for (int j = 1; j < 6; j++){    // for()    Console.WriteLine($"\n第{j}次比较");    ConcurrentBag<int> bag = new ConcurrentBag<int>();    var watch = Stopwatch.StartNew();    watch.Start();    for (int i = 0; i < 20000000; i++)    {        bag.Add(i);    }    watch.Stop();    Console.WriteLine($"串行计算:集合有:{bag.Count},总共耗时:{watch.ElapsedMilliseconds}");     // Parallel.For()    bag = new ConcurrentBag<int>();    watch = Stopwatch.StartNew();    watch.Start();    Parallel.For(0, 20000000, i => // i 为整数序列号                 {                     bag.Add(i);                 });    watch.Stop();    Console.WriteLine($"并行计算:集合有:{bag.Count},总共耗时:{watch.ElapsedMilliseconds}");}

代码总共执行了五次对比,如下图中的耗时比较,很明显,采用并行的 Parallel.For() 远比串行的 for() 效率要高许多。

  

1.3 重载二:Parallel.For(Int32, Int32, Action<Int32,ParallelLoopState>)

// fromInclusive:开始索引(含) toExclusive:结束索引(不含) body:不允许为 nullpublic static ParallelLoopResult For (int fromInclusive, int toExclusive, Action<int, ParallelLoopState> body);

此重载增加了 System.Threading.Tasks.ParallelLoopState 循环状态参数,从而使得我们可以通过循环状态来控制并行循环的运行。

以下实例,执行 100 次迭代,在随机数 breakIndex 指示的一次迭代时进行中断操作,调用完 Break() 方法后,循环状态的 ShouldExitCurrentIteration 属性值就是 true,然后进入判断if (state.LowestBreakIteration < i),当当前迭代序号大于中断时的序号,就直接返回,不再进行后续操作。

var rnd = new Random();int breakIndex = rnd.Next(1, 11);Console.WriteLine($"Will call Break at iteration {breakIndex}\n");var result = Parallel.For(1, 101, (i, state) => // 实际执行的是 1 ~ 100,不包含 101{    Console.WriteLine($"Beginning iteration {i} {Thread.GetCurrentProcessorId()}");    int delay;    lock (rnd)        delay = rnd.Next(1, 1001);    Thread.Sleep(delay);    if (state.ShouldExitCurrentIteration)    {        if (state.LowestBreakIteration < i)            return;    }    if (i == breakIndex) // 8    {        Console.WriteLine($"Break in iteration {i}");        state.Break();    }    Console.WriteLine($"Completed iteration {i} {Thread.GetCurrentProcessorId()}");});if (result.LowestBreakIteration.HasValue)    Console.WriteLine($"\nLowest Break Iteration: {result.LowestBreakIteration}");else    Console.WriteLine($"\nNo lowest break iteration.");

如下是当索引值为 9 时的处理过程:(当迭代序号为 9 时,执行 Break(),此之前已经开始迭代执行的大于 9 的迭代,均直接退出,只有开始没有结束)

  

1.4 重载三:Parallel.For(Int32, Int32, ParallelOptions, Action<Int32,ParallelLoopState>)

// fromInclusive:开始索引(含) toExclusive:结束索引(不含) body:不允许为 nullpublic static ParallelLoopResult For (int fromInclusive, int toExclusive, ParallelOptions parallelOptions, Action<int, ParallelLoopState> body);

此重载在执行 for 循环时,可以配置循环选项 ParallelOptions。

下边是一个实例,通过配置 ParallelOptions 的 CancellationToken 属性,使得循环支持手动取消:

static void Main(string[] args){    CancellationTokenSource cancellationSource = new CancellationTokenSource();    ParallelOptions options = new ParallelOptions();    options.CancellationToken = cancellationSource.Token;    try    {        ParallelLoopResult loopResult = Parallel.For( 0, 10, options,                (i, loopState) =>                {                    Console.WriteLine("Start Thread={0}, i={1}", Thread.CurrentThread.ManagedThreadId, i);                    if (i == 5) // 模拟某次迭代执行时,取消循环                    {                        cancellationSource.Cancel();                    }                    for (int j = 0; j < 10; j++)                    {                        Thread.Sleep(1 * 200); // 模拟耗时任务                        if (loopState.ShouldExitCurrentIteration) // 判断循环是否已经取消执行                            return;                    }                    Console.WriteLine($"Finish Thread={Thread.CurrentThread.ManagedThreadId}, i={i}");                }            );        if (loopResult.IsCompleted)        {            Console.WriteLine("All iterations completed successfully. THIS WAS NOT EXPECTED.");        }    }    catch (AggregateException aex) // 注意:AggregateException 为并行中专用的异常信息集合    {        Console.WriteLine($"Parallel.For has thrown an AggregateException. THIS WAS NOT EXPECTED.\n{aex}");        //foreach (var item in aex.InnerExceptions) // 可以通过循环将全部信息记录下来        //{        //    Console.WriteLine(item.InnerException.Message + "     " + item.GetType().Name);        //}        //aex.Handle(p => // 如果想往上级抛,需要使用 Handle 方法处理一下        //{        //    if (p.InnerException.Message == "my god!Exception from childTask1 happend!")        //        return true;        //    else        //        return false; // 返回 false 表示往上继续抛出异常        //});    }    catch (OperationCanceledException ocex) // 专门用于取消循环异常的捕捉    {        Console.WriteLine($"An iteration has triggered a cancellation. THIS WAS EXPECTED.\n{ocex}");    }    finally    {        cancellationSource.Dispose();    }}

 如下图中的输出,所有迭代任务都未完成,主要是因为耗时操作执行完成之前,循环就取消了,在if (loopState.ShouldExitCurrentIteration)判断时,均为 true 就直接返回了。

  

1.5 重载四:For<TLocal>(Int32, Int32, ParallelOptions, Func<TLocal>, Func<Int32,ParallelLoopState,TLocal,TLocal>, Action<TLocal>)

public static ParallelLoopResult For<TLocal> (int fromInclusive, int toExclusive,                                               ParallelOptions parallelOptions,                                               Func<TLocal> localInit,                                               Func<int,ParallelLoopState,TLocal,TLocal> body,                                               Action<TLocal> localFinally);

以下示例使用线程局部变量来计算许多冗长操作的结果之和。 此示例将并行度限制为 4。

static void Main(string[] args){    int result = 0;    int N = 1000000;    Parallel.For(        0, N,        // 限制最多 4 个并行任务        new ParallelOptions { MaxDegreeOfParallelism = 4 },        // Func<TLocal> 初始化本地变量,本地变量是线程独立变量        () => 0,        // Func<Int32,ParallelLoopState,TLocal,TLocal> 迭代操作        (i, loop, localState) =>        {            for (int ii = 0; ii < 10000; ii++) ;            return localState + 1;        },        localState =>            Interlocked.Add(ref result, localState)    );    Console.WriteLine("实际运算结果: {0}. 目标值: 1000000", result);    Console.ReadLine();}

如下图输出结果:

  

参考:https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.tasks.parallel.for?view=net-7.0

关于 ParallelOptions 详见:https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.tasks.paralleloptions?view=net-7.0

2、Parallel.ForEach()

2.1 重载一:Parallel.ForEach<TSource>(IEnumerable<TSource>, Action<TSource>)

public static ParallelLoopResult ForEach<TSource> (IEnumerable<TSource> source, Action<TSource> body);

执行 ForEach 操作,在处理关于 IEnumerable 集合的任务时,可并行运行迭代。

如下代码块,简单的将一个整数数组,输出到控制台:

static void Main(string[] args){    int[] ints = { 11, 12, 13, 14, 15, 16, 17, 18, 19 };    ParallelLoopResult result = Parallel.ForEach(ints,        i =>        {            Console.WriteLine(i);        });    Console.ReadLine();}

从输出结果看,ForEach 操作是无序的:

  

2.2 重载二:ForEach<TSource>(IEnumerable<TSource>, ParallelOptions, Action<TSource,ParallelLoopState,Int64>)

public static ParallelLoopResult ForEach<TSource> (IEnumerable<TSource> source, ParallelOptions parallelOptions, Action<TSource,ParallelLoopState,long> body);

 执行具有 64 位索引(标识待循环集合的顺序)的 foreach 操作,其中在 IEnumerable 上可能会并行运行迭代,而且可以配置循环选项,可以监视和操作循环的状态。

 如下示例代码,设置并行任务数为 5,在索引为 6 的任务执行过程中中断循环,看下输出结果:

static void Main(string[] args){            // 创建一个集合,其中包含一些数字    var numbers = new int[] { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 };    // 使用 ParallelOptions 选项设置并行处理的行为    var parallelOptions = new ParallelOptions    {        MaxDegreeOfParallelism = 5    };    Parallel.ForEach(numbers, parallelOptions, (source, loopState, index) => // index:集合中对象的从 0 开始的序号    {        // 在此处编写并行处理逻辑        Console.WriteLine($"开始--Index: {index}, Value: {source}, ThreadId: {Thread.GetCurrentProcessorId()}");        if (loopState.ShouldExitCurrentIteration)            return;        Thread.Sleep(200);        if (index == 6)            loopState.Break();        Console.WriteLine($"结束++Index: {index}, Value: {source}, ThreadId: {Thread.GetCurrentProcessorId()}");    });    Console.ReadLine();}

如下图输出结果,一次性开始 5 个并行任务,当第 6 个任务进入时,中断循环。

由于操作是无序的,所以在中断之前可能索引在 6 之后的已经开始或者已经执行完成,如下图 8、9 已经执行完毕,7尚未执行。

注意,若允许并行的任务数少时,可能 6 之后的任务都还没来得及开始,另外,每次执行的结果不同。

   

2.3 重载三:Parallel.ForEach<TSource>(Partitioner<TSource>, Action<TSource>)

public static ParallelLoopResult ForEach<TSource> (System.Collections.Concurrent.Partitioner<TSource> source, Action<TSource> body);

此重载的独到之处,就是可以将数据进行分区,每一个小区内实现串行计算,分区采用 Partitioner.Create() 实现。

long sum = 0;long sumtop = 10000000;Stopwatch sw = Stopwatch.StartNew();Parallel.ForEach(Partitioner.Create(0, sumtop), (range) =>{    long local = 0;    for (long i = range.Item1; i < range.Item2; i++)        local += i;    Interlocked.Add(ref sum, local); // Interlocked:为由多个线程共享的变量提供原子操作 Add():求和后替换原来的数值,相当于 +=});sw.Stop();Console.WriteLine($"Partitioner.Create() 分区方式执行效率: result = {sum}, time = {sw.ElapsedMilliseconds} ms");// 输出:// Partitioner.Create() 分区方式执行效率: result = 49999995000000, time = 8 ms

关于分区的创建方法 Partitioner.Create(0, Int64)

  • 指定了分区的范围,就是 0 ~ Int64;
  • 参数中并没有指定分多少个区,默认是系统自动判断执行的。
  • 还可以指定分区,做法就是Partitioner.Create(0, 3000000, Environment.ProcessorCount),其中 Environment.ProcessorCount 参数,就对应当前计算机逻辑处理器的数量。

2.4 重载四:ForEach<TSource,TLocal>(IEnumerable<TSource>, Func<TLocal>, Func<TSource,ParallelLoopState,TLocal,TLocal>, Action<TLocal>)

执行具有线程本地数据的 foreach 操作,其中在 IEnumerable 上可能会并行运行迭代,而且可以监视和操作循环的状态。

public static ParallelLoopResult ForEach<TSource,TLocal> (IEnumerable<TSource> source,                                                           Func<TLocal> localInit,                                                          Func<TSource,ParallelLoopState,TLocal,TLocal> body,                                                           Action<TLocal> localFinally);

如下示例,将全部整数逐个输出并且最后在输出他们之和:

static void Main(string[] args){    // 全部值的和为 40    int[] input = { 4, 1, 6, 2, 9, 5, 10, 3 };    int sum = 0;    try    {        Parallel.ForEach(                // IEnumerable<TSource> 可枚举的数据源                input,                // Func<TLocal> 用于返回每个任务的【本地数据的初始状态】的函数委托                // 本示例中的目的就是将 TLocal localSum 的值在每次迭代都赋值为 0                () => 0,                // Func<TSource,ParallelLoopState,TLocal,TLocal> 将为每个迭代调用一次的委托                (n, loopState, localSum) =>                {                    localSum += n;                    Console.WriteLine($"Thread={Thread.CurrentThread.ManagedThreadId}, n={n}, localSum={localSum}");                    return localSum;                },                // Action<TLocal> 用于对每个任务的本地状态执行一个最终操作的委托                // 此示例中的作用是将每个值逐一求和,并返回 sum                (localSum) =>                    Interlocked.Add(ref sum, localSum)            );        Console.WriteLine("\nSum={0}", sum);    }    catch (AggregateException e)    {        Console.WriteLine("Parallel.ForEach has thrown an exception. This was not expected.\n{0}", e);    }    Console.ReadLine();}

如下输出结果,其中 localSum 在每个线程中初始值都是 0,在其他线程中参与的求和运算,不影响当前线程。

  

2.5 比较执行效率 for、Parallel.For()、Parallel.For()+TLocal、Parallel.ForEach(Partitioner.Create(), Action<TSource>)

static void Main(string[] args){    Stopwatch sw = null;    long sum = 0;    long sumtop = 10000000;    // 常规 for 循环    sw = Stopwatch.StartNew();    for (long i = 0; i < sumtop; i++)        sum += i;    sw.Stop();    Console.WriteLine($"result = {sum}, time = {sw.ElapsedMilliseconds} ms  --常规 for 循环");     // Parallel.For() 方式    sum = 0;    sw = Stopwatch.StartNew();    Parallel.For(0L, sumtop,        (item) => Interlocked.Add(ref sum, item));    sw.Stop();    Console.WriteLine($"result = {sum}, time = {sw.ElapsedMilliseconds} ms  --Parallel.For() 方式");     // Parallel.For() + TLocal    sum = 0;    sw = Stopwatch.StartNew();    Parallel.For(        0L, sumtop,         () => 0L,         (item, state, prevLocal) =>             prevLocal + item,         local =>             Interlocked.Add(ref sum, local));    sw.Stop();    Console.WriteLine($"result = {sum}, time = {sw.ElapsedMilliseconds} ms  --Parallel.For() + locals 方式");     // Partitioner.Create() 分区方式    sum = 0;    sw = Stopwatch.StartNew();    Parallel.ForEach(Partitioner.Create(0L, sumtop), (range) =>    {        long local = 0;        for (long i = range.Item1; i < range.Item2; i++)            local += i;        Interlocked.Add(ref sum, local);    });    sw.Stop();    Console.WriteLine($"result = {sum}, time = {sw.ElapsedMilliseconds} ms  --Partitioner.Create() 分区方式");    Console.ReadLine();}

如下输出结果,效率最高的显然是自动分区的方式,比常规的 for 循环块将近一倍。最慢的是 Parallel.For() 方式,由于加锁求和导致上下文频繁切换比较耗时,因此这种求和的计算模式不适用。

  

参考:https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.tasks.parallel.foreach?view=net-7.0

3、Parallel.ForEachAsync()

Parallel.ForEachAsync() 是在 .NET 6 中新增的一个 API,是 Parallel.ForEach() 的异步版本。https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.tasks.parallel.foreachasync?view=net-7.0

下面简单说明一下 Parallel.ForEach() 和 Parallel.ForEachAsync() 的区别。

  • Parallel.ForEach() 是在默认多个或指定的个数的线程下执行的。而 Parallel.ForEachAsync() 不一定是多线程的,强调的是异步而已。
  • 若目标集合必须按照顺序执行,则不能选用 Parallel.ForEach() 方法,因为它是无序执行的。
  • 当待处理的数据量很大或者执行过程比较耗时,则选用多线程执行的 Parallel.ForEach() 方法更好。

下面是一个关于重载 ForEachAsync<TSource>(IAsyncEnumerable<TSource>, ParallelOptions, Func<TSource,CancellationToken,ValueTask>) 的一个简单示例代码:

static async Task Main(string[] args){    var nums = Enumerable.Range(0, 10).ToArray();    await Parallel.ForEachAsync(        nums,        new ParallelOptions { MaxDegreeOfParallelism = 3 }, // 配置最多同时分配三个线程        async (i, token) => // Func<TSource,CancellationToken,ValueTask> // 其中 ValueTask 提供异步操作的可等待结果,指的是下文 await 的内容        {            Console.WriteLine($"开始迭代任务 {i} ThreadId:{Thread.GetCurrentProcessorId()}");            // public static Task Delay(int millisecondsDelay, CancellationToken cancellationToken)            // 在指定毫秒后,调用 token 取消当前任务            await Task.Delay(1000, token);             Console.WriteLine($"完成迭代任务 {i}");        });    Console.WriteLine("Finished!");    Console.ReadLine();}

详情可参考:https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.tasks.parallel.foreachasync?view=net-7.0   ; https://www.gregbair.dev/posts/parallel-foreachasync/

4、Parallel.Invoke()

尽可能并行执行提供的每个操作。

4.1 两个重载:Invoke(Action[])、Invoke(ParallelOptions, Action[])

下面是一个运用 Invoke(Action[]) 重载的示例,分别加入了三个操作,然后看执行结果。第二个重载是在第一个重载的基础上加了并行选项 ParallelOptions 就不在赘述了。

static void Main(string[] args){    try    {        Parallel.Invoke(            BasicAction,	// 第一个操作 - 静态方法            () =>		// 第二个操作 - 箭头函数            {                Console.WriteLine("Method=beta, Thread={0}", Thread.CurrentThread.ManagedThreadId);            },            delegate ()		// 第三个操作 - 委托函数            {                Console.WriteLine("Method=gamma, Thread={0}", Thread.CurrentThread.ManagedThreadId);            }        );    }    catch (AggregateException e)    {        Console.WriteLine("An action has thrown an exception. THIS WAS UNEXPECTED.\n{0}", e.InnerException.ToString());    }    Console.ReadLine();}static void BasicAction(){    Console.WriteLine("Method=alpha, Thread={0}", Thread.CurrentThread.ManagedThreadId);}

由输出结果可知,三个操作是无序的、多线程执行的。

  

两个参考:https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.tasks.parallel.invoke?view=net-7.0  Parallel的使用

三、简单总结一下下

 实际上看的资料再多,如果没用到实际开发当中就是无用功,下边简单总结一下吧。

由本文 1.2 比较执行效率 Parallel.For() 和 for() 中可知:

  • 对于大批量耗时且顺序要求不高的场景可以采用 Parallel.For() 方法,如果对次序有依赖,则只能采用常用的 for 循环。
  • 对于操作简单的循环操作,Parallel.For() 就不太适合了,因为多线程操作涉及到上下文的切换,过多的切换场景会严重影响程序运行的效率。

由本文 2.5 比较执行效率 for、Parallel.For()、Parallel.For()+TLocal、Parallel.ForEach(Partitioner.Create(), Action<TSource>)  中可知:

  • 由于示例中的操作比较简单,此时 Parallel.For() 上下文的的切换耗时以及加锁的缺点就凸现了,效率最差。
  • 使用线程本地变量(TLocal)的 Parallel.For() 可以避免将大量的访问同步为共享状态的开销,所以可以看到效率就高很多。可参考:编写具有线程局部变量的 Parallel.For 循环
  • 分区循环操作 Partitioner.Create(0, Int64) 方法的效率最高,因为事先给待处理的任务进行了分区,分区内串行,避免了过多的上下文切换耗时。

 注:个人整理,欢迎路过的大佬评论区指正和补充。

© 版权声明
THE END
喜欢就支持一下吧
点赞0

Warning: mysqli_query(): (HY000/3): Error writing file '/tmp/MYt9PAGF' (Errcode: 28 - No space left on device) in /www/wwwroot/583.cn/wp-includes/class-wpdb.php on line 2345
admin的头像-五八三
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

图形验证码
取消
昵称代码图片